Image domains of certain starlike functions

Shigeyoshi Owa＊，Kazuo Kuroki＊＊and Junichi Nishiwaki＊＊＊

Abstract

Let \mathcal{S}^{*} be the class of analytic functions $f(z)$ with $f(0)=0$ and $f^{\prime}(0)=1$ which are starlike with respect to the origin in the open unit disk \mathbb{U} ．We discuss the length of the image curve of $f(z)$ and the area of the image domain of $f(z)$ in the present paper．

2010 Mathematics Subject Classification：Primary 30C45．
Keywords and Phrases ：analytic function，univalent function
starlike function，limacon．

1 Introduction

Let \mathcal{A} be the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}| | z \mid<1\}$ ．A function $f(z) \in \mathcal{A}$ is said to be univalent in \mathbb{U} if and only if $f\left(z_{1}\right) \neq f\left(z_{2}\right)$ for $z_{1} \in \mathbb{U}$ and $z_{2} \in \mathbb{U}$ such that $z_{1} \neq z_{2}$ ．The class of all univalent functions $f(z)$ in \mathbb{U} is denoted by \mathcal{S} ．If $f(z) \in \mathcal{A}$ satisfies the condition given in

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0 \quad(z \in \mathbb{U}) \tag{1.2}
\end{equation*}
$$

then $f(z)$ is called starlike with respect to the origin in \mathbb{U} ．Also，we denote by \mathcal{S}^{*} all starlike functions $f(z)$ with respect to the origin in \mathbb{U} ．Moreover，if $f(z) \in \mathcal{A}$ satisfies $z f^{\prime}(z) \in \mathcal{S}^{*}$ which is equivalent to

[^0]\[

$$
\begin{equation*}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0 \quad(z \in \mathbb{U}) \tag{1.3}
\end{equation*}
$$

\]

then we claim that $f(z)$ is convex in \mathbb{U} and we will formalize it as $f(z) \in \mathcal{K}$ (cf. Duren [1]).

Then, it is well-known that

$$
\begin{equation*}
f(z)=\frac{z}{(1-z)^{2}}=z+\sum_{n=2}^{\infty} n z^{n} \tag{1.4}
\end{equation*}
$$

is the extremal function for \mathcal{S}^{*} and that

$$
\begin{equation*}
f(z)=\frac{z}{1-z}=z+\sum_{n=2}^{\infty} z^{n} \tag{1.5}
\end{equation*}
$$

is the extremal function for \mathcal{K} (cf. Robertson [2]).
In 1972, Silverman [3] showed that if $f(z) \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty} n\left|a_{n}\right| \leqq 1 \tag{1.6}
\end{equation*}
$$

then we will get $f(z) \in \mathcal{S}^{*}$, and that if $f(z) \in \mathcal{A}$ satisfies

$$
\begin{equation*}
\sum_{n=2}^{\infty} n^{2}\left|a_{n}\right| \leqq 1 \tag{1.7}
\end{equation*}
$$

then $f(z) \in \mathcal{K}$. With the results obtained by Silverman [3], it is already known that a function $f(z)$ given by

$$
\begin{equation*}
f(z)=z+\frac{1}{n} z^{n} \quad(n=2,3,4, \cdots) \tag{1.8}
\end{equation*}
$$

is in the class \mathcal{S}^{*} and that a function

$$
\begin{equation*}
f(z)=z+\frac{1}{n^{2}} z^{n} \quad(n=2,3,4, \cdots) \tag{1.9}
\end{equation*}
$$

is in the class \mathcal{K}.
From now on, we are going to consider the image domains of $f(z)$ given by (1.8) for $z \in \mathbb{U}$.

2 Limacon

Now, at first let us consider the function

$$
\begin{equation*}
f(z)=z+\frac{1}{n} z^{n} \quad(n=2,3,4, \cdots) \tag{2.1}
\end{equation*}
$$

which is called the limacon in \mathbb{U}. If we write that $z=r e^{i \theta}(0 \leqq \theta \leqq 2 \pi)$ and $f(z)=u+i v$ in (2.1), then we know that

$$
\begin{equation*}
u=r \cos \theta+\frac{r^{n}}{n} \cos n \theta \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
v=r \sin \theta+\frac{r^{n}}{n} \sin n \theta . \tag{2.3}
\end{equation*}
$$

We confirm that $f(z) \in \mathcal{S}^{*}$.
Let us suppose that \mathcal{L}_{r} denotes the length of the image curve of $f(z)$ for $|z|=r$, and that \mathcal{S}_{r} is the area of the image domain of $f(z)$ for $|z|<r$.

Theorem 2.1 If $f(z)$ is given by (2.1), then we have

$$
\begin{equation*}
\mathcal{L}_{r}=2 r(n-1) \int_{0}^{\frac{\pi}{n-1}} \sqrt{1+r^{2(n-1)}+2 r^{n-1} \cos (n-1) \theta} d \theta \tag{2.4}
\end{equation*}
$$

for $r>0$, and we also have

$$
\begin{equation*}
\mathcal{S}_{r}=\frac{r^{2}\left(n+r^{2(n-1)}\right)}{n} \pi \tag{2.5}
\end{equation*}
$$

for $0<r \leqq 1$.

Proof. By means of the definition for \mathcal{L}_{r}, we have

$$
\begin{align*}
\mathcal{L}_{r} & =\int_{0}^{2 \pi} \sqrt{\left(\frac{\partial u}{\partial \theta}\right)^{2}+\left(\frac{\partial v}{\partial \theta}\right)^{2}} d \theta \tag{2.6}\\
& =\int_{0}^{2 \pi} \sqrt{\left(r \sin \theta+r^{n} \sin n \theta\right)^{2}+\left(r \cos \theta+r^{n} \cos n \theta\right)^{2}} d \theta \\
& =2 r(n-1) \int_{0}^{\frac{\pi}{n-1}} \sqrt{1+r^{2(n-1)}+2 r^{n-1} \cos (n-1) \theta} d \theta .
\end{align*}
$$

Furthermore, we will get

$$
\begin{equation*}
\mathcal{S}_{r}=\int_{\pi}^{0} v d u-\int_{\pi}^{2 \pi} v d u \tag{2.7}
\end{equation*}
$$

$$
\begin{aligned}
& =\int_{0}^{2 \pi}\left(r^{2} \sin ^{2} \theta+\frac{n+1}{n} r^{n+1} \sin \theta \sin n \theta+\frac{1}{n} r^{2 n} \sin ^{2} n \theta\right) d \theta \\
& =\frac{r^{2}\left(n+r^{2(n-1)}\right)}{n} \pi
\end{aligned}
$$

The deduction provided in (2.6) and (2.7) leads to the validity of the theorem.

If we consider the case of $r=1$ in Theorem 2.1, then we will get what follows.
Corollary 2.1 If $f(z)$ is given by (2.1), then $\mathcal{L}_{1}=8$ and $\mathcal{S}_{1}=\frac{n+1}{n} \pi$.
Remark 2.1 Corollary 2.1 shows us that $\mathcal{L}_{1}=8$ and $\mathcal{S}_{1}=\frac{n+1}{n} \pi$ for any $n(n=$ $2,3,4, \cdots)$ if $r=1$. Furthermore, $\lim _{n \rightarrow \infty} \mathcal{S}_{r}=\pi r^{2}$.

Corollary 2.2 If $f(z)$ is indicated in (2.1), then (2.8) naturally follows.

$$
\begin{equation*}
\mathcal{L}_{r}=r^{n+1} \mathcal{L}_{\frac{1}{r}} \quad(r>0) . \tag{2.8}
\end{equation*}
$$

Proof. In view of \mathcal{L}_{r} in (2.4), we calculate $\mathcal{L}_{\frac{1}{r}}$ as follows

$$
\begin{align*}
& \mathcal{L}_{\frac{1}{r}}=\frac{2(n-1)}{r} \int_{0}^{\frac{\pi}{n-1}} \sqrt{1+\left(\frac{1}{r}\right)^{2(n-1)}+2\left(\frac{1}{r}\right)^{n-1} \cos (n-1) \theta} d \theta \tag{2.9}\\
& =\frac{2(n-1)}{r^{n}} \int_{0}^{\frac{\pi}{n-1}} \sqrt{1+r^{2(n-1)}+2 r^{n-1} \cos (n-1) \theta} d \theta=\frac{1}{r^{n+1}} \mathcal{L}_{r}
\end{align*}
$$

for $n=2,3,4, \cdots$ and $r>0$.

3 Case of $\boldsymbol{n}=3$

In this section, we now analyze the case of $n=3$ in detail. We have to check that the function

$$
\begin{equation*}
f(z)=z+\frac{1}{3} x^{3} \quad(0<r \leqq \sqrt{3}) \tag{3.1}
\end{equation*}
$$

maps $|z|=r$ for the following curves.

$$
0<r<1
$$

$1<r<\sqrt{3}$

$r=1$
$r=\sqrt{3}$

From the four figures shown above, we can now derive
Theorem 3.1 If $f(z)$ is given by (3.1) with $0<r \leqq \sqrt{3}$, then we have

$$
\begin{align*}
2 r\left(1-r^{2}\right) \pi & \leqq \mathcal{L}_{r}<8 \quad(0<r<1), \tag{3.2}\\
\mathcal{L}_{r} & =8 \quad(r=1), \tag{3.3}
\end{align*}
$$

$$
\begin{equation*}
8<\mathcal{L}_{r} \leqq 2 r\left(1+r^{2}\right) \pi \quad(1<r<\sqrt{3}) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
4 \sqrt{3} \pi \leqq \mathcal{L}_{r} \leqq 8 \sqrt{3} \pi \quad(r=\sqrt{3}) . \tag{3.5}
\end{equation*}
$$

Proof. We can claim that $z=r e^{i \theta}$ and $f(z)=u+i v$ for $f(z)$ of (3.1). Then

$$
\left\{\begin{array}{l}
u=r \cos \theta+\frac{r^{3}}{3} \cos 3 \theta \tag{3.6}\\
v=r \sin \theta+\frac{r^{3}}{3} \sin 3 \theta
\end{array}\right.
$$

and

$$
\left\{\begin{align*}
\frac{\partial u}{\partial \theta} & =-r \sin \theta-r^{3} \sin 3 \theta \tag{3.7}\\
\frac{\partial v}{\partial \theta} & =r \cos \theta+r^{3} \cos 3 \theta
\end{align*}\right.
$$

If $0<r<1$, then

$$
\begin{align*}
& \mathcal{L}_{r}=\int_{0}^{2 \pi} \sqrt{\left(\frac{\partial u}{\partial \theta}\right)^{2}+\left(\frac{\partial v}{\partial \theta}\right)^{2}} d \theta \tag{3.8}\\
& =4 r \int_{0}^{\frac{\pi}{2}} \sqrt{1+r^{4}+2 r^{2} \cos 2 \theta} d \theta
\end{align*}
$$

This provide us with (3.2) for $0<r<1$. If $r=1$, then we obtain that $\mathcal{L}_{r}=8$. If $1<r<\sqrt{3}$, then we have the following image domain by $f(z)$ for $1<|z|<\sqrt{3}$.

Using (3.8), we can confirm that

$$
\begin{equation*}
8<\mathcal{L}_{r} \leqq 4 r \int_{0}^{\frac{\pi}{2}}\left(1+r^{2}\right) d \theta=2 r\left(1+r^{2}\right) \pi \tag{3.9}
\end{equation*}
$$

for $1<r<\sqrt{3}$. Finally, if $r=\sqrt{3}$, then (3.8) becomes

$$
\begin{equation*}
\mathcal{L}_{r}=4 \sqrt{6} \int_{0}^{\frac{\pi}{2}} \sqrt{5+3 \cos 2 \theta} d \theta \tag{3.10}
\end{equation*}
$$

Therefore, we obtain the following inequality

$$
\begin{equation*}
8 \sqrt{3} \int_{0}^{\frac{\pi}{2}} d \theta \leqq \mathcal{L}_{r} \leqq 16 \sqrt{3} \int_{0}^{\frac{\pi}{2}} d \theta \tag{3.11}
\end{equation*}
$$

which gives (3.5) for $r=\sqrt{3}$.

Next, we will consider the area of the image of $f(z)$ for $|z|=r$. If $0<r \leqq 1$ is valid, then the image of $f(z)$ is the starlike domain. Thus, we use \mathcal{S}_{r} for the area of the image for $0<r \leqq 1$. In the case of $1<r \leqq \sqrt{3}, f(z)$ is not starlike as in the following figures.

$1 \leqq r \leqq \sqrt{3}$

$r=\sqrt{3}$

In this case, we regard the shaded parts as \mathcal{S}_{r}.
Theorem 3.2 If $f(z)$ is given by (3.1) with $0<r \leqq \sqrt{3}$, then we have

$$
\begin{equation*}
\mathcal{S}_{r}=\frac{r^{2}\left(3+r^{4}\right)}{3} \pi \quad(0<r<1) \tag{3.12}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{S}_{r}=\frac{4}{3} \pi \quad(r=1) \tag{3.13}
\end{equation*}
$$

$$
\begin{align*}
& \mathcal{S}_{r}=r^{2}\left(1+\frac{r^{4}}{3}\right)\left(4 \cos ^{-1}\left(\frac{\sqrt{3\left(r^{2}-1\right)}}{2 r}\right)-\pi\right) \tag{3.14}\\
&+\frac{4 r^{2}}{3} \sqrt{3\left(r^{2}-1\right)\left(r^{2}+3\right)} \quad(1<r<\sqrt{3})
\end{align*}
$$

and

$$
\begin{equation*}
\mathcal{S}_{r}=24 \quad(r=\sqrt{3}) \tag{3.15}
\end{equation*}
$$

Proof. It is clear that \mathcal{S}_{r} satisfies (3.12) for $0<r<1$ and (3.13) for $r=1$ from Theorem 2.1. Thus, we only need to argue for $1<r \leqq \sqrt{3}$. We consider that

$$
\begin{equation*}
u=r \cos \theta+\frac{r^{3}}{3} \cos 3 \theta=r \cos \theta\left(1-r^{2}+\frac{4 r^{2}}{3} \cos ^{2} \theta\right)=0 \tag{3.16}
\end{equation*}
$$

for $0 \leqq \theta \leqq \frac{\pi}{2}$. It follows that

$$
\theta=\frac{\pi}{2} \quad \text { and } \quad \theta=\cos ^{-1}\left(\frac{\sqrt{3\left(r^{2}-1\right)}}{2 r}\right)
$$

Letting $\theta_{1}=\frac{\pi}{2}$ and

$$
\begin{equation*}
\theta_{2}=\cos ^{-1}\left(\frac{\sqrt{3\left(r^{2}-1\right)}}{2 r}\right), \tag{3.17}
\end{equation*}
$$

from the discussion above, we can calculate as follows.

$$
\begin{align*}
\mathcal{S}_{r}= & 4\left\{\int_{\theta_{2}}^{0} v d u-\int_{\theta_{1}}^{\theta_{2}} v d u\right\} \tag{3.18}\\
= & 4\left\{\int_{\theta_{2}}^{0}\left(r \sin \theta+\frac{r^{3}}{3} \sin 3 \theta\right)\left(-r \sin \theta-r^{3} \sin 3 \theta\right) d \theta\right. \\
& \left.\quad-\int_{\frac{\pi}{2}}^{\theta_{2}}\left(r \sin \theta+\frac{r^{3}}{3} \sin 3 \theta\right)\left(-r \sin \theta-r^{3} \sin 3 \theta\right) d \theta\right\} \\
= & {[F(\theta)]_{\theta_{2}}^{0}-[F(\theta)]_{\frac{\pi}{2}}^{\theta_{2}} } \\
= & F(0)-2 F\left(\theta_{2}\right)+F\left(\frac{\pi}{2}\right)
\end{align*}
$$

where

$$
\begin{equation*}
F(\theta)=-\frac{2 r^{2}}{3}\left\{\left(3+r^{4}\right) \theta+\frac{4 r^{2}-3}{2} r \sin 2 \theta-r^{2} \sin 4 \theta-\frac{r^{4}}{6} \sin 6 \theta\right\} . \tag{3.19}
\end{equation*}
$$

Therefore, using the following formulas

$$
\begin{gather*}
\sin \theta_{2}=\frac{\sqrt{r^{2}+3}}{2 r}, \tag{3.20}\\
\sin 2 \theta_{2}=\frac{\sqrt{3\left(r^{2}-1\right)\left(r^{2}+3\right)}}{2 r^{2}}, \tag{3.21}\\
\sin 4 \theta_{2}=\frac{\left(r^{2}-3\right) \sqrt{3\left(r^{2}-1\right)\left(r^{2}+3\right)}}{2 r^{4}} \tag{3.22}
\end{gather*}
$$

and

$$
\begin{equation*}
\sin 6 \theta_{2}=\frac{3\left(3-2 r^{2}\right) \sqrt{3\left(r^{2}-1\right)\left(r^{2}+3\right)}}{2 r^{6}}, \tag{3.23}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\mathcal{S}_{r}=\frac{r^{2}}{3}\left\{\left(3+r^{4}\right)\left(4 \theta_{2}-\pi\right)+2\left(4 r^{2}-3\right) \sin 2 \theta_{2}-4 r^{2} \sin 4 \theta_{2}-\frac{2 r^{4}}{3} \sin 6 \theta_{2}\right\} \tag{3.24}
\end{equation*}
$$

$$
=r^{2}\left(1+\frac{r^{4}}{3}\right)\left(4 \cos ^{-1}\left(\frac{\sqrt{3\left(r^{2}-1\right)}}{2 r}\right)-\pi\right)+\frac{4 r^{2}}{3} \sqrt{3\left(r^{2}-1\right)\left(r^{2}+3\right)}
$$

for $1<r<\sqrt{3}$. Finally, letting $r=\sqrt{3}$ in (3.24), we have that

$$
\begin{equation*}
\mathcal{S}_{r}=\frac{4 r^{2}}{3} \sqrt{3\left(r^{2}-1\right)\left(r^{2}+3\right)}=24 \tag{3.25}
\end{equation*}
$$

because

$$
\begin{equation*}
\cos ^{-1}\left(\frac{\sqrt{3\left(r^{2}-1\right)}}{2 r}\right)=\frac{\pi}{4} \tag{3.26}
\end{equation*}
$$

is valid for $r=\sqrt{3}$.

Remark For the special r in Theorem 3.2, we have $\mathcal{S}_{r}=\frac{13}{24} \pi=1.70169 \cdots$ for $r=\frac{1}{\sqrt{2}}<1$ and $\mathcal{S}_{r}=\frac{7}{8} \pi+3 \sqrt{3}=7.94504 \cdots$ for $r=\frac{\sqrt{6}}{2}>1$.

Acknowledgments

The present paper by the authors was presented in the meetings of Japan Society of Mathmatical Education in 2013.

References

[1] P. L. Duren, Univalent Functions, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983
[2] M. S. Robertson, On the theory of univalent functions, Ann. of Math. 37 (1936), 374-408
[3] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1972), 109-116

[^0]: ＊Department of Mathematics，Faculty of Education，Yamato University Katayama，Suita，Osaka 564－0082，Japan
 ＊＊Department of Mathematics，Study Support Center
 Osaka University of Health and Sport Sciences
 Kumatori，Sennan，Osaka 590－0496，Japan
 ＊＊＊Department of Mathematics and Physics，Setsunan University
 Ikeda Naka，Neyagawa，Osaka 572－8508，Japan

